Regression Techniques versus Discriminative Methods for Face Recognition

نویسندگان

  • Vitomir Štruc
  • France Mihelič
  • Rok Gajšek
  • Nikola Pavešić
چکیده

In the field of face recognition it is generally believed that ”state of the art” recognition rates can only be achieved when discriminative (e.g., linear or generalized discriminant analysis) rather than expressive (e.g., principal or kernel principal component analysis) methods are used for facial feature extraction. However, while being superior in terms of the recognition rates, the discriminative techniques still exhibit some shortcomings when compared to the expressive approaches. More specifically, they suffer from the so-called small sample size (SSS) problem which is regularly encountered in the field of face recognition and occurs when the sample dimensionality is larger than the number of available training samples per subject. In this type of problems, the discriminative techniques need modifications in order to be feasible, but even in their most elaborate forms require at least two training samples per subject. The expressive approaches, on the other hand, are not susceptible to the SSS problem and are thus applicable even in the most extreme case of the small sample size problem, i.e., when only one training sample per subject is available. Nevertheless, in this paper we will show that the recognition performance of the expressive methods can match (or in some cases surpass) that of the discriminative techniques if the expressive feature extraction approaches are used as multivariate regression techniques with a pre-designed response matrix that encodes the class-membership of the training samples. The effectiveness of the regression techniques for face recognition is demonstrated in a series of experiments performed on the ORL database. Additionally a comparative assessment of the regression techniques and popular discriminative approaches is presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Individual Discriminative Face Recognition Models Based on Subsets of Features

The accuracy of data classification methods depends considerably on the data representation and on the selected features. In this work, the elastic net model selection is used to identify meaningful and important features in face recognition. Modelling the characteristics which distinguish one person from another using only subsets of features will both decrease the computational cost and incre...

متن کامل

Discriminative Training of Hyper-feature Models for Object Identification

Object identification is the task of identifying specific objects belonging to the same class such as cars. We often need to recognize an object that we have only seen a few times. In fact, we often observe only one example of a particular object before we need to recognize it again. Thus we are interested in building a system which can learn to extract distinctive markers from a single example...

متن کامل

Face Recognition in Thermal Images based on Sparse Classifier

Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...

متن کامل

A comprehensive experimental comparison of the aggregation techniques for face recognition

In face recognition, one of the most important problems to tackle is a large amount of data and the redundancy of information contained in facial images. There are numerous approaches attempting to reduce this redundancy. One of them is information aggregation based on the results of classifiers built on selected facial areas being the most salient regions from the point of view of classificati...

متن کامل

Title of dissertation : FACE RECOGNITION AND VERIFICATION IN UNCONSTRAINED ENVIRIONMENTS

Title of dissertation: FACE RECOGNITION AND VERIFICATION IN UNCONSTRAINED ENVIRIONMENTS Huimin Guo Doctor of Philosophy, 2012 Dissertation directed by: Professor Larry S. Davis Department of Computer Science Face recognition has been a long standing problem in computer vision. General face recognition is challenging because of large appearance variability due to factors including pose, ambient ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008